Kateřina Dušková
AG kuželoseček – elipsa
Elipsa je množina všech bodů v rovině, které mají od dvou stálých bodů (ohnisek) stálý součet vzdáleností, který je větší, než vzdálenost těchto bodů (2e). … střed elipsy … ohniska elipsy … bod ležící na elipse … hlavní vrcholy elipsy … vedlejší vrcholy elipsy přímka … hlavní osa elipsy vedlejší osa elipsy … přímka, která je kolmá […]
číst víceAG kuželoseček – kružnice
Kružnice je množina všech bodů v rovině, které mají od daného bodu S stejnou vzdálenost r. … poloměr kružnice … střed kružnice … bod ležící na kružnici … středová rovnice kružnice se středem v bodě … středová rovnice kružnice se středem v bodě … obecná rovnice kružnice Poloha bodů na kružnici dané středovou rovnicí: … bod leží na kružnici … […]
číst víceAG – metrické úlohy metodou souřadnic
Odchylky Dvě přímky v rovině: Odchylka dvou přímek ze směrových (normálových) vektorů se vypočítá podle vzorce: Příklad: Dvě přímky v prostoru: Dvě roviny v prostoru: Přímka a rovina: Příklady: 1) 2) Vzdálenosti Bod a přímka v rovině: Bod a přímka v prostoru: Vypočítat obecnou rovnici roviny r, která je kolmá k přímce p a obsahuje bod X: Vypočítat souřadnice bodu P, který […]
číst víceAG – vzájemná poloha dvou přímek v rovině a v prostoru
V rovině p, q … přímky … směrové vektory přímek p a q … normálové vektory přímek p a q rovnoběžné různoběžné průsečík P – bod, ve kterém se přímky p a q protínají – vypočítá se převedením rovnic přímek p a q na parametrické rovnice, u kterých se porovnají x-ové a y-ové části, z nichž vzniknou dvě rovnice o dvou […]
číst víceAG – vzájemná poloha přímky a roviny, dvou rovin
Vzájemná poloha přímky a roviny p … přímka r … rovina rovnoběžné různoběžné průsečík P – z parametrické rovnice přímky p se dosadí do rovnice roviny r ® vyjádří se parametr tp ® parametr se dosadí zpět do parametrických rovnic přímky p a vyjdou souřadnice průsečíku P splývající různé Příklady: Jaká je vzájemná poloha přímky a roviny? 1) […]
číst víceVýroková logika
Výrok je sdělení, o které má smysl říct zda je, či není pravdivý. Hypotéza (domněnka) – je to výrok u něhož jsme u daného okamžiků neurčili jednoznačně pravdivost. Pravdivý výrok 1 Nepravdivý výrok 0 Základní logické spojky: Značka Název Slovní vyjádření Ø negace není pravda,že Ù konjukce …a…,…a současně…,…a zároveň… Ú disjunce …nebo… Þ implikace Jestliže…, pak…; Když…,pak…; Je-li… Û ekvivalence […]
číst víceVariace, permutace, kombinace
Faktoriál čísla Příklad: Kombinatorika Variace bez opakování: Variace k-té třídy z n prvků je uspořádaná k-tice sestavená z těchto prvků tak, že každý prvek se v ní vyskytuje nejvýše jednou. Permutace bez opakování: Permutace z n prvků je každá variace n-té třídy z těchto prvků bez opakování. Kombinace bez opakování: Kombinace k-té třídy z n prvků bez opakování je neuspořádaná k-tice […]
číst vícePolohové a metrické vztahy základních a geometrických útvaru v prostoru
Stereometrie · Část geometrie, která se zabývá studiem geometrických útvarů v prostoru. Základní geometrické útvary: Přímka je určena dvěma různými body. Rovina je určena třemi různými body neležícími v jedné přímce. Libovolná rovina rozděluje prostor na dva navzájem opačné poloprostory a je jejich hraniční rovinou. Tělesa: Krychle Kvádr Pravidelný n-boký hrynol Hranol s podstavou pravidelného n-úhelníku (např. kvádr […]
číst víceUrčitý integrál – užití
Určitý integrál Nechť je funkce spojitá v intervalu . Newton-Lebnitzova formule – Příklad: Užití určitého integrálu Výpočet obsahu plochy ohraničené křivkami: Postup výpočtu: načrtnutí grafů funkcí do soustavy souřadnic a určení obrazce, jehož plocha se má vypočítat určení horní a dolní meze integrálu jako x-ových souřadnic průsečíků funkcí omezujících plochu sestavení funkce do určitého integrálu (funkce je dána […]
číst víceStatistika
Statistika zkoumá společenské, přírodní a technické jevy vždy na dostatečně velkém souboru případů (hledá ty vlastnosti, které se projevují teprve v souboru případů, ne jednotlivě). Statistický soubor – množina osob, věcí, událostí, časových období apod. Jeho prvky nazýváme statistické jednotky. Rozsah statistického souboru (n) – počet jednotek v souboru. Statistické jednotky se vždy vyšetřují z hlediska zvoleného znaku. U každé jednotky […]
číst více