Kateřina Dušková

Objemy a povrchy těles

1. Objem a povrch Kvádru 2. Objem a povrch Krychle 3. Objem a povrch Válce 4. Objem a povrch Jehlanu 5. Objem a povrch rotační Rotačního kužele 6. …

číst více

Řešení obecného trojúhelníku

Sinova věta Nechť ABC je trojúhelník, jehož vnitřní úhly mají velikosti a, b, g a strany délky a, b, c, pak platí: Poměr délky strany a hodnoty sinu …

číst více

Neurčitý integrál – metody integrace

Neurčitý integrál – primitivní funkce Je dána funkce f definována na intervalu . Říká se, že funkce F je primitivní funkcí f na intervalu , jestliže …

číst více

Nekonečná geometrická řada

Nechť je dána posloupnost . Výraz, který obsahuje její členy a má tvar se nazývá nekonečná řada. Členy se nazývají členy nekonečné řady. Jestliže je …

číst více

Moivreova věta, binomické rovnice

Moivreova věta Pro všechna přirozená čísla n a pro libovolné reálné číslo j platí: . Pro všechna přirozená čísla n a pro všechna komplexní čísla ve …

číst více

Mocniny a odmocniny

Mocnina: a – základ mocniny n – mocnitel (mocnina, exponent) n krát Mocnina s celočíselným exponentem Pro všechna reálná čísla a, b (nenulová) a pro …

číst více

Množiny – operace, intervaly

Množina je souhrn předmětů, které chápeme jako celek – předměty = prvky množiny x je z množiny A xÎA xIA A={2} – jednoprvková množina Prázdná množina …

číst více

Matice a determinanty

Matice Definice: Matice typu (m,n) je množina m×n čísel uspořádaná do obdélníkového tvaru o m řádcích a n sloupcích. Tato čísla nazýváme prvky matice …

číst více

Lomené výrazy – operace

Krácení a rozšiřování lomených výrazů: Rozšíření výrazu čísla r znamená vynásobit čitatele i jmenovatele čísla r. Krátit lomený výraz znamená dělit …

číst více

Logaritmické rovnice

Logaritmické rovnice jsou rovnice, které mají neznámou jako logaritmovaný výraz nebo se neznámá vyskytuje jako základ logaritmu. Do řešení …

číst více